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Abstract 

An essential first step in most techniques for using 
anomalous-scattering data for phase determination is 
to determine the positions of the anomalous scat- 
terers. This is usually done by use of the anomalous 
differences, either as input to a direct-methods pro- 
cedure or to produce a Patterson map. If the 
arrangement of anomalous scatterers is non- 
centrosymmetric then it is also necessary to find their 
absolute configuration and a process is described for 
doing this based on the properties of the P~ function 
[Okaya, Saito & Pepinsky (1955). Phys. Rev. 98, 
1857-1858]. If the arrangement of anomalous scat- 
terers is centrosymmetric then the problem does not 
o c c u r .  

Introduction 

Many methods have been proposed for the use of 
one-wavelength anomalous scattering (OAS) for 
solving crystal structures, e.g. Okaya, Saito & 
Pepinsky (1955), Ramachandran & Raman (1956), 
Fan (1965), Hendrickson & Teeter (1981), Hau- 
ptman (1982), Giacovazzo (1983), Karle (1984b, 
1989), Fan & Gu (1985), Hao & Woolfson (1989), 
and Ralph & Woolfson (1991). The increasing 
availability of synchrotron sources with beamlines 
dedicated to anomalous scattering means that the 
collection of multi-wavelength anomalous-scattering 
(MAS) data is becoming more common. While scal- 
ing different data sets together is straightforward in 
principle (Karle, 1984a), in practice one often finds 
incompatibilities in intensities of data at different 
wavelengths that scaling cannot correct. Nevertheless 
MAS data, used with discretion, are a powerful tool 
for solving structures, in particular macromolecular 
structures. 

Numbers of different methods are available for the 
use of MAS data, e.g. Karle (1980), Woolfson 
(1984), and Fan, Woolfson & Yao (1993). The basis 
of these methods can be seen in Fig. 1 which relates 
to a two-wavelength case where the structure con- 
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tains only one kind of anomalous scatterer. The 
structure factor of index h is given by 

F(h) = F'~(h) + F'(h) + iF"(h), (1) 

where F~(h) is the normal component of the scat- 
tering, including that of the anomalous scatterers, 
and F'(h) and F"(h) are the contributions of the real 
and imaginary components of the anomalous scat- 
tering, respectively. Also shown in Fig. 1 is 

F*(h) = F°(h) + F'(h) - iF"(h). (2) 

The subscripts 1 and 2 in Fig. 1 refer to the two 
wavelengths a l and ~2. The basis of the multi- 
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Fig. 1. The basis of  the resolution of  the phase ambiguity with 

anomalous-scattering data at two wavelengths. The common 
solution for the structure factor without anomalous scattering is 
CD. 

Acta Crystallographica Section D 
ISSN 0907-4449 © 1994 



8 ABSOLUTE C O N F I G U R A T I O N  OF ANOMALOUS SCATTERERS 

wavelength approach is as follows. Given the posi- 
tions of the anomalous scatterers and a single 
wavelength, say A j, the F~'(h) and F~"(h) are defined 
in magnitude and orientation. Then, assuming that 
the anomalous scatterers are all of the same type, 

M 

F~'(h) = f l ' ~  exp (2rrih.R,.) 
.,,'= I 

= IF~'(h)l exp [iq~A(h)] (3) 

and 

F~"(h) : i ( f ," / f , ' )F~'(h) ,  (4) 

where the M anomalous scatterers have coordinates 
RJ, J = l  to M, and f l '  a n d f l "  are the real and 
imaginary parts of the anomalous-scattering factor, 
assumed independent of h. From the measured struc- 
ture amplitudes F(h)l and IF(h) ~, triangles A B O  
and ABO" can be constructed, and from this 
information alone F°(h), the structure factor if 
anomalous scattering did not occur, can be found to 
be either CD or ED. If a second wavelength, ,~2, is 
available then F°(h) can be found to be either CD or 
E'D  and the ambiguity is thus resolved since there is 
only one common solution. With real data the posi- 
tion is usually less clear but by analytical means 
involving a best-fit, e.g. least-squares, procedure the 
ambiguity can be resolved and a best value can be 
found for F°(h) both in magnitude and phase. A 
Fourier synthesis calculated with the values of F°(h) 
should, in principle, show the structure but in any 
case usually gives a starting point either for model 
fitting or phase extension and refinement to provide 
a better map. 

An important prerequisite for either an OAS or a 
MAS approach was mentioned above but rather 
glossed over, i.e. that the positions of the anomalous 
scatterers should be known. Various procedures have 
been suggested for doing this but commonly the 
values of IAF(h)I = I:F(h)!- !F(h)ll are used either 
to calculate a Patterson synthesis or as input into a 
direct-methods program (Mukherjee, Helliwell & 
Main, 1989). However, either of these two 
approaches alone is not enough if the arrangement of 
anomalous scatterers is non-centrosymmetric since 
the absolute configuration will not be defined. The 
effect of taking the enatiomorph of the correct con- 
figuration of anomalous scatterers can be visualized 
from Fig. 1. The line D X Y ,  along Fl'(h) and F2'(h), 
will be reflected in the real axis to D'X'  Y" and the 
whole diagram will be rotated anticlockwise by an 
angle 20(h). Thus each F°(h) will be estimated with a 
correct magnitude but an incorrect phase and the 
calculated map will not show the structure. One way 
around this difficulty is just to calculate phases for 
both alternatives and then the correct one may be 

selected by some figure-of-merit tests or may be 
obvious by the appearance of the map. There is, 
however, an objective procedure for solving this 
problem, which requires only one data set and this 
we now describe. 

The Ps function 

The properties of the P~. map, defined as 

P, . (u)=(1/V)~[IF(h)I  2 -  IF(h)12] sin (27rh. u), (5) 
h 

were first described by Okaya, Saito & Pepinsky 
(1955). This antisymmetric map shows positive peaks 
corresponding to vectors between anomalous scat- 
terers and non-anomalous scatterers and negative 
peaks in the opposite directions. For other than 
trivial structures there is some loss of information as 
a result of the cancellation of positive and negative 
peaks but, nevertheless, Hao & Woolfson (1989) 
showed that the P~ function could be used to solve a 
protein structure if OAS data were available. Ignor- 
ing the loss of information by cancellation it is clear 
that the positive regions of the P.,. map will show the 
sum of M images of the complete structure, less the 
anomalous scatterers, each image having a different 
anomalous scatterer at the origin. The Hao & 
Woolfson (1989) procedure involved the calculation 
of a sum map, based on the assumed known values 
of the anomalous scatterers, which was of the form 

Q(r) = (1/V)ZS(h)[IF(h)I  2 - IF(h)l 2] sin (2~h.  u), (6) 
h 

where 
M 

S ( h ) :  7". exp(2~rih. Rj). (7) 
j = l  

Negative regions of the map were then changed to 
zero and the Fourier transform of the resultant map 
gave phase estimates from which the structure could 
subsequently be derived by standard methods. Hao 
& Woolfson tried various other procedures, for 
example, removing negativity before the sum- 
function calculations and also using a minimum 
function rather than a sum function but these added 
to the total effort and gave inferior results. Because 
of the loss of information by peak cancellation the 
sum function is found to be the best process. 

Our method of finding the correct configuration of 
the anomalous scatterers is based on this work. 

Finding the correct configuration 

The situation we consider is that a set of coordinates 
for the anomalous scatterers {R) is available but that 
it is possible that the correct coordinates are { -  R}. 
If the sum function Q(r) has been calculated for the 
correct configuration then it will contain a positive 
image of the structure with weight M plus sundry 
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other positive and negative images of lesser weight. 
Let us now consider the value of 

C, = fQ(r) 'd V (8) 

taken over the whole unit cell for various values of n. 
Since P,(u) is an antisymmetric function, and has an 
average value zero over the whole cell, then clearly 
any sum of such functions, with whatever dis- 
placements, will also equal zero. Hence C~ = 0. With 
n = 2 the integral cannot be zero but the value of C2 
will not be very informative. If the wrong configura- 
tion is chosen then a build up of M negative images 
is formed and the function obtained, Q'(r) is related 
to the correct function by 

Q'(r) = - Q ( - r )  (9) 

and the value of C2 will not depend on which 
configuration, correct or incorrect, is used for calcu- 
lating the sum function. It is the value of C3 which 
enables the correct configuration to be found. If it is 
positive then the sum function was performed with 
the correct configuration, otherwise the other con- 
figuration is correct. This can be visualized by refer- 
ence to Fig. 2. In Fig. 2(a) there is shown a simple 
structure with three anomalous scatterers (the mini- 
mum to have a non-centrosymmetric arrangement) 
and three non-anomalous scatterers. Fig. 2(b) shows 
the point P, function and Fig. 2(c) a threefold sum 
function taking the anomalous scatterers with the 
correct configuration. The model has been taken so 
that there is no cancellation of peaks. The result in 
Fig. 2(c) is as follows: 18 single-weight positive 

peaks, 
weight 
peaks. 

three triple-weight positive peaks, 17 single- 
negative peaks; five double-weight negative 

We can now calculate that 

C~=(18 x 1)+(3  × 3 ) - ( 1 7 x  1 ) - ( 5  x 2 ) = 0  

C2=(18 x 1)+(3  x 9 ) + ( 1 7 x  1 ) + ( 5 x 4 ) = 8 2  

C3=(18 × 1)+(3  × 2 7 ) - ( 1 7 x  1 ) - ( 5  x 8 ) = 5 2 .  

If the incorrect configuration had been used the 
values would have been 0, 82 and -52 ,  respectively. 

Tests so far, on real data for two structures, have 
shown that this is a reliable indicator of the correct 
configuration. The first of these structures core 
streptavidin (Hendrickson, Pfihler, Smith, Satow, 
Merritt & Phizackerley, 1989) is a 125-127 residue 
protein, space group I222 with a = 95.2, b = 105.6, 
c = 47.4 ]k. The anomalous scatterers are two Se 
atoms in each asymmetric unit. The wavelength used 
for the data was 0.9795 A for whichf '  = - 6.203 and 
f "  = 3.663. The value of C3 was 1.156 × 106 and the 
mean phase error deduced from the minimum- 
function map produced by the correct configuration 
was 73.2 ~. Using the incorrect configuration gave C3 
= -  1.156 x 10 6 and the minimum-function map 
gave a mean phase error of 90.1 ~. 

The second structure was that of RNA (Dodson, 
Sevcik, Dodson & Zelinka, 1987). This contains two 
molecules, each with 96 amino-acid residues per 
asymmetric unit, in a cell with space group P2~2,2~ 
with a = 64.9, b = 78.3 and c = 38.8 A. The anoma- 
lous scatterers are Pt atoms of which there are six in 
each asymmetric unit although they are distributed 
on 20 sites with partial occupancy. The value of C3, 
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Fig. 2. (a) A simple model structure with three anomalous scatterers • and three non-anomalous scatterers x.  (b) The P, function for 
the model structure. Positive peaks are denoted by • and negative peaks by O. (c) A sum function based on the correct configuration 
of  the three anomalous scatterers. The symbols indicate: • single-weight positive peak; (~) triple-weight positive peak; o single-weight 
negative peak; O double-weight negative peak. 
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4.213 x 104, again indicated the correct enantio- 
morph; the minimum-function overlap gave a mean 
phase error of 77.3 °, which became 90.5 ° if the 
wrong enantiomorph was taken to produce the over- 
lap function. It should be stated that RNA was not a 
favourable case, especially for the use of the Ps 
function method and a much lower mean phase error 
could be obtained by an alternative procedure 
(Ralph & Woolfson, 1991). 

The procedure as explained above is quite simple; 
the function Q(r) is calculated and then Q(r) 3 is 
summed over all the grid points at which the func- 
tion has been calculated. The sign of the summation 
then indicates which is the correct configuration. The 
sensitivity of the test depends on the proportion of 
positive to negative contribution to C3, which is 
affected by peak cancellation. It will be seen in the 
simple numerical example we used that the ratio of 
positive to negative contribution was 99:47 or about 
2:1 and this should not depend too sensitively on the 
complexity of the structure. We might also notice 
that peak cancellation removes both negative and 
positive peaks equally. It seems likely that the test is 
a robust one. 

If the arrangement of peaks is centrosymmetric 
then the problem of finding the absolute configura- 
tion of the anomalous scatterers does not arise. In 
this case the sum-function map will, like the original 
Ps function, be antisymmetric and the value of C3 
will be zero. However, the positive regions of the 
sum-function map will correspond to the correct 
absolute configuration of the total structure and can 

be used as a starting point for the structure deter- 
mination. 

We wish to express our appreciation for the sup- 
port of the Wellcome foundation which enabled this 
work to be carried out as part of a larger study of 
anomalous scattering and its applications. 
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